Appearance
53. 最大子序和
原题链接:LeetCode 53. 最大子序和
题目描述
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
示例 1:
**输入:**nums = [-2,1,-3,4,-1,2,1,-5,4] **输出:**6 **解释:**连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
**输入:**nums = [1] **输出:**1
示例 3:
**输入:**nums = [5,4,-1,7,8] **输出:**23
提示:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
**进阶:**如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。
难度: Medium
题解代码
javascript
/**
* @param {number[]} nums
* @return {number}
*/
var maxSubArray = function(nums) {
// 贪心
// 若当前指针所指之前的元素之和小于0
// 则丢弃当前元素之前的数列
let sum = nums[0]
let maxSum = nums[0]
for (let i = 1; i < nums.length; i++) {
sum = sum > 0 ? sum + nums[i] : nums[i]
maxSum = Math.max(sum, maxSum)
}
return maxSum
};
var maxSubArray = function(nums) {
// 动态规划
// 若前一个元素大于0
// 则将其加到当前元素上
let maxSum = nums[0]
for (let i = 1; i < nums.length; i++) {
nums[i] = nums[i - 1] > 0 ? nums[i - 1] + nums[i] : nums[i]
maxSum = Math.max(sum, maxSum)
}
return maxSum
};
var maxSubArray = function(nums) {
// 动态规划
for (let i = 1; i < nums.length; i++) {
nums[i] = nums[i - 1] > 0 ? nums[i - 1] + nums[i] : nums[i]
}
return Math.max(...nums)
};